Department of CS & IT

Class-MSc IT-II Semester

Pattern of Question Paper - Eight questions of equal marks (Specified in the syllabus), two in each of the four Sections (A-D). Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each Section. The fifth question may be attempted from any Section.

Distributed Database

	Credits
M. Marks: 100	LTP
	400

Month wise Division	Syllabus Unitization
Jan-Feb	 <u>SECTION-A</u> Introduction Concepts, Advantages and Disadvantages of Distributed Database Management System (DDBMS), Homogenous and Heterogeneous DDBMS. Functions of a DDBMS. Distributed Database Management System Architecture Architectural Models for DDBMS (Distributed Database Management System): Autonomy, Distribution, Heterogeneity factors; Client Server Systems, Peer-to-Peer Distributed Systems <u>SECTION-B</u> Distributed Relational Database Design Fragmentation: Reasons, Alternatives, Degree, Information requirement. Horizontal, Vertical, Hybrid Fragmentation. Allocation: Allocation Problem, Information Requirements for allocation.
March	<u>SECTION-C</u> Distributed Relational Database Query Processing & Optimization Query Decomposition, Localization of Distributed Data, Query Optimization, Introduction to Distributed Query Optimization Algorithms.
April	SECTION–D Distributed Concurrency Control, Objectives, Distributed Serializability, Centralized two-phase locking, Distributed two-phase locking.

Prescribed Book

Book Name – Principles of Distributed Database Systems

<u>Author –</u> M.Tamer Ozsu, Patrick Valdureiz

<u>Publisher –</u> Prentice Hall

Month wise	Syllabus Unitization	
Division		
Jan-Feb	SECTION–-A Introduction The Case for Imprecision, A Historical Perspective, The Utility of Fuzzy Systems, Limitations of Fuzzy Systems . Classical Sets and Fuzzy Sets Classical Sets: Operations on Classical Sets, Properties of Classical (Crisp) Sets, Mapping of Classical Sets to Functions, Fuzzy Sets: Fuzzy Set Operations, Properties of Fuzzy Sets, Alternative Fuzzy Set Operations. SECTION–-B Classical Relations and Fuzzy Relations Cartesian Product, Crisp Relations: Cardinality of Crisp Relations, Operations on Crisp Relations, Properties of Crisp Relations, Composition, Fuzzy Relations: Cardinality of Fuzzy Relations, Operations on Fuzzy Relations, Properties of Fuzzy Relations, Fuzzy Cartesian Product and Composition, Tolerance and Equivalence Relations: Crisp Equivalence Relation, Crisp Tolerance Relation, Fuzzy Tolerance and Equivalence Relations: Value Assignments, Max–Min Method Properties of Membership Functions, Fuzzification, and Defuzzification Features of the Membership Function, Various Forms, Fuzzification, Defuzzification to Crisp Sets, λ -Cuts for Fuzzy Relations, Defuzzification to Scalars.	
March	SECTION-AThe Illusion: Ignoring Uncertainty and Accuracy, Uncertainty and Information, The Unknown, Fuzzy Sets and Membership, Chance Versus FuzzinessSECTION-CLogic and Fuzzy Systems Part I Logic: Classical Logic, Fuzzy Logic, Approximate Reasoning, Other Forms of the Implication Operation Part II Fuzzy Systems :Natural Language, Linguistic Hedges, Fuzzy (Rule-Based) Systems, Graphical Techniques of Inference Development of Membership Functions Membership Value Assignments: Intuition, Inference, Rank Ordering, Neural Networks, Genetic Algorithms, Inductive Reasoning.SECTIONDDecision Making with Fuzzy Information Fuzzy Synthetic Evaluation, Fuzzy Ordering, Non- transitive Ranking, Preference and Consensus, Multiobjective Decision Making	
April	SECTION-D Classification Classification by Equivalence Relations, Crisp Relations, Fuzzy Relations, Cluster Analysis, Cluster Validity, c-Means Clustering, Fuzzy c-Means (FCM), Fuzzy c- Means Algorithm Introduction to MATLAB: Fuzzy Logic Toolbox, Fuzzy Logic Simulink Demos . MATLAB simulation: Fuzzy Logic Controller (FLC) implementation. Simulink Fuzzy Logic Controller (FLC) implementation. Applications of FLC to Control System. Develop Fuzzy Inference System for various applications.	

Prescribed Book

Book Name – Fuzzy System

<u>Author –</u> Amandeep Singh

Publisher – Kalyani Publisher

M. Marks: 100

Month wise	Syllabus Unitization	
Division		
Jan-Feb	SECTIONA	
	Introduction to Image Processing Systems, Digital Image Fundamentals:- Image	
	model, Relationship between Pixels, Imaging geometry, Camera model.	
	Manipulation on Images:- Images transformation : Introduction to FT, DFT and	
	FFT. Walsh transformation, Hadamard transformation, Hotelling transformation,	
	Histogram.	
	Image Smoothing: - Neighborhood Averaging, Median Filtering, Low Pass Filters,	
	Average of Multiple Images, Image Sharpening by Differentiation Technique, High Pass filtering.	
	SECTIONB	
	Image Restoration: - Degradation models for continuous function, effect of	
	diagonalization, ondegradation, algebraic approach to restoration, interactive	
	restoration, Gray level interpolation.	
March	SECTIONB	
	Image Encoding and Segmentation: - Encoding, Mapping, Quantizer and Coder.	
	Segmentation: - Detection of discontinuation by point detection, line detection,	
	edge detection. Edge linking and boundary detection:- Local analysis, global by	
	graph, theoretic techniques.	
	SECTIONC	
	Thresh-holding: - definition, global thresh-holding.	
	Filtering:- median, gradient, simple method of representation signatures,	
	boundary segments, skeleton of region.	
	Image observation models, Inverse & Weiner fittening, FIR Weiner fitters,	
	Fittening using Image transforms, Least square fitters, Generalized inverse, SVD & iterative methods.	
April	SECTIOND	
-	Spatial feature Extraction, Transform feature, Edge detection, Boundary	
	extraction, Boundary Representation, Region representation, Moment	
	representation.	
	Structures Shape features, Texture, Seene matching & detection, Image	
	Segmentation, Classification techniques, Image understanding.	

Prescribed Book

<u>Book Name</u> – Digital Image processing

<u>Author –</u> Neeraj Anand

Publisher – Anand

M. Marks: 100

Month wise Division	Syllabus Unitization
Jan-Feb	SECTION-A
	Introduction: Current Wireless Systems: Overview of Paging Systems,
	Cordless Phones, Cellular Telephone Systems, Satellite Communication,
	Wireless LANs, Bluetooth. Modern Wireless Communication Systems
	2G/2.5G/3G/4G Wireless Networks and Standards, Wireless in Local loop &
	LMDS Cellular Concepts Frequency spectrum, frequency reuse, channel
	assignment strategies, handoff strategies, interference and system
	capacity, fundamentals of antennas, Equivalent circuit for antenna,
	Antennas as cell site, Mobile antennas, Analog Vs Digital.
	<u>SECTION-B</u>
	Cellular Networks Mobile Radio Propagation, A basic cellular system,
	Performance criterion, Operations of Cellular Networks, Concept of
	frequency reuse Channels, Co channel Interference and it's reduction
	factor, types of non co channel Interference, Digital Modulation. Multi
	Access Technique & Wireless Standards
March	<u>SECTION-B</u>
	TDD, FDD, Rake receiver, CDD, Spread spectrum, (direct and frequency
	hopping) FDMA, TDMA, CDMA, Wireless Standards GSM, CDMA, DECT,
	UMTS & IMT-2000
	<u>SECTION-C</u>
	WAP Model and architecture, Gateway, Protocol stack, Wireless
	Application environment Wireless LAN IEEE 802.11 Concepts, MAC Layer,
	Spread Spectrum Wireless LAN, Infrared Wireless LANs, Other Physical
	Layer Protocol (IEEE 802.11b, IEEE 802.11a), Wireless PAN (Bluetooth),
	HIPERLAN, Mobile Network Layer (Mobile IP), Mobile Transport Layer
	(Mobile TCP), Mobile Data network (GPRS),
April	<u>SECTION-D</u>
	GSM Systems Overview Architecture, Location tracking, and call setup.
	Security, Data Services N/W Signaling, GSMmobility management,
	Operations, Administration and maintenance. GSM bearer Services. SMS
	architecture-Protocol Hierarchy, Mobile prepaid phone services.

Prescribed Book

<u>Book Name</u> – Mobile Computing

<u>Author –</u> Gurjeet Singh

Publisher – Kalyani Publisher

Network Design and Performance Analysis

M. Marks: 100

Credits LTP 400

Month wise Division	Syllabus Unitization
Jan-Feb	SECTIONA
	Requirements, planning, & choosing technology: Business requirements,
	technical requirement user requirements, traffic sizing characteristics time
	& delay consideration. Traffic engineering and capacity planning:
	Throughput calculation traffic characteristics & source models, traditional
	traffic engineering, queued data & packet switched traffic modeling,
	designing for peaks, delay or
	SECTIONB
	Technology Comparisons- Generic packet switching networks
	characteristics, private vs. public networking, Business aspects of packet,
	frame and cell switching services, High speed LAN protocols comparison,
	Application performance needs, Throughput, burstiness, response time and
	delay tolerance, selecting service provider, vendor, service levels etc.
March	SECTIONC
	Network performance modeling- creating traffic matrix, design tools,
	components of design tools, types of design projects. Access Network
	Design- N/W design layers, Access N/W design, access n/w capacity,
	Backbone n/w design, Backbone segments, backbone capacity, topologies,
	Tuning the network, securing the network,
April	SECTIOND
	Design for network security. Network Optimization: Network optimization
	theory: Goals of network optimization, measurements for network
	optimization, optimization tools, optimization techniques.

Prescribed Book

Book Name – Data Network Design

<u>Author –</u> Darren Spohn

Publisher – McGraw-Hill Education (India) Pvt Limited